
 

Supplementary Figure 1. Three-dimensional electron microscopy approach 

for the comprehensive analysis of the chlamydial inclusion. 

(A) Representative monolayer of C. trachomatis-infected HeLa cells at 32 hpi. A 

single infected cell is outlined in red with the large chlamydial inclusion below the 

gray nucleus. Scale bar: 200 µm. (B) Magnified image of a single section 

showing four chlamydial developmental forms: reticulate body (RB), dividing RB, 

intermediate body (IB) and elementary body (EB). Scale bar: 1000 nm. (C) Pie 

charts showing the distribution of the four chlamydial forms in the entire inclusion 

and each of the three sections from Fig. 1A.  



 

 

 

Supplementary Figure 2. Validation of chlamydial quantification.  

(A) Total number of chlamydiae per infected cell determined by 3D EM analysis 

of Chlamydia-infected cells (12 hpi n=50 inclusions, 16 hpi n=31, 20 hpi n=22, 24 

hpi n=10, 28 hpi n=13, 32 hpi n=10, 36 hpi n=9, 40 hpi n=10) and by measuring 

the number of genome copies by qPCR (n=3 independent experiments) 1. Error 

bars indicate standard deviation from the mean. (B) Number of EBs per infected 

cell at 24 hpi (n=10 inclusions) and 36 hpi (n=9 inclusions), as measured by 3D 

EM analysis, and infectious EBs per cell measured with an infectious progeny 

assay (n=3 independent experiments) 2. Error bars indicate standard deviation. 

 

 

 

 

 



 

Supplementary Figure 3. Temporal analysis of IB and EB size.  

(A) Measurements of IB volume and (B) EB volume during the developmental 

cycle. Average volume of all IBs and EBs in each inclusion was first determined, 

and then the mean volume for all inclusions at each time point was calculated. 24 

hpi (n=3 inclusions), 28 hpi (n=5), 32 hpi (n=8), 36 hpi (n=5), 40 hpi (n=8). Error 

bars indicate standard deviation. No IBs or EBs were detected at 12, 16, or 20 

hpi. 



Supplementary Table 1. SBEM Micrograph Image Sizes 

Time point (hpi) Monolayer microscope ID Pixel size (nm) 

12 5221079 8.6 x 8.6 x 60 

16 455561 32 x 32 x 60 

20 5239437 10.4 x 10.4 x 60 

24 5239072 26 x 26 x 60 

28 

5194144, 5194220, 

5194245, 5194413 

3.6 x 3.6 x.60 

5221161 13 x 13 x 60 

5230011, 5228936 10.3 x 10.3 x 60 

32 

5204491, 5206195 8.4 x 8.4 x 60 

5229784 10.3 x 10.3 x 60 

5239356 20 x 20 x 60 

36 

5119341, 5119366 4.6 x 4.6 x 60 

5120258 2.5 x 2.5 x 60 

5204439 8.4 x 8.4 x 60 

5204464 3.3 x 3.3 x 60 

5221104, 5228909 10.3 x 10.3 x 60 

40 
5203366, 5203391 8.4 x 8.4 x 60 

5229169 10.3 x 10.3 x 60 

 



Supplementary Table 2. Selection of chlamydial inclusions for analysis by 3D EM 

Inclusions marked in gray were randomly selected for segmentation and analysis. 
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SUPPLEMENTARY NOTES

Supplementary Note 1: Introduction

In this appendix we carry out a detailed description of a mathematical model used in
the main text to provide insight into the experimental data and the proposed mechanisms
for Chlamydia cell fate regulation. The experimental evidence presented in the main text
points to the intriguing hypothesis that cell size could regulate conversion. As RB cells
divide, they become increasingly smaller on average, and a threshold size would initiate EB
conversion with high probability.

In order to accurately reflect the diversity of RB sizes in an inclusion at any given time, as
well as the randomness inherent in RB growth rates and division, we developed a stochastic
model of a chlamydial infection. Individual RBs were allowed to grow at slightly different
rates from each other and divide at different time intervals, resulting in a broad distribution
of RB sizes. We also include in the model the fact that Chlamydia cell division is slightly
asymmetric, which also increases the size variability over time.

When RBs reach a threshold size, they have a given probability per unit time of initiating
conversion. Since it takes several cell divisions to reach the threshold size, this mechanism
implements a delay before conversion and thereby the conversion strategy outlined above.

This model is consistent with the experimental data both of the populations over time
of each of the four chlamydial forms, and also regarding their size. This model provides
evidence that size control is a viable strategy to optimize the number of infectious bacteria
during an infection, which is consistent with experimental measurements in Chlamydia.

Supplementary Note 2: Model Description

The stochastic model used in Figure 5 of the main text has the aim to show how a cell
size regulatory mechanism can effectively implement a strategy of early replication followed
by late RB-to-EB conversion. A simulation of this model begins with a single RB inside a
cytoplasmic inclusion growing into a dividing RB (also known as DB). The DB eventually
divides into two RBs, each of which in turn grows and divides, and so on, modeling the
growth of the chlamydial population within a single inclusion. At every time point, each
RB and DB present has an assigned size. When this size decreases below a threshold value
sthr, the RB has the ability to convert into an IB and subsequently an EB. See Figure 4B
of the main text for a network of the transitions between chlamydial forms.

The time between state transitions is determined stochastically by drawing numbers in-
dependently from a continuous distribution. Rather than an exponential distribution as is
common for chemical reactions, we use a gamma distribution, which represents the time
before a given number of events in a Poisson processes, and which better describes the tim-
ing between cell transitions. For instance, the time for the transition from RB to DB has
a gamma distribution with mean ρRD, where ρRD is the average time before the transition.
Similarly for transitions from DB to RB, from RB to IB, and from IB to EB. The shape
parameter for all gamma distributions used is γs = 5. Since RBs can transform into either
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2 MATHEMATICAL ANALYSIS

DB or IB, separate times are drawn for each outcome from gamma distributions, and the
earlier of the two times determines the actual cell fate.

Gamma distributions are a natural choice for the time between divisions, because they
explicitly postulate a number of events that need to take place before division can occur,
with each of these events assuming an exponential distribution for simplicity. They have
been used before for this purpose, see for instance [3, 4]. An exponential distribution itself
would be considered too noisy to represent time between divisions. Other distributions
are also possible, for instance a lognormal distribution. In fact gamma and lognormal
distributions can look very similar, and it may be quite difficult to distinguish between
them experimentally – see for example Figure 1 in [3].

The mean transition time ρRI is a function of the current size s, namely it is set to ∞ if
s ≥ sthr. This effectively shuts down conversion above the threshold size and implements the
size control described above. Since this model describes the dynamics of different chlamydial
forms inside an inclusion, we have also implemented a form of population capacity for this
system. When a maximum of 1000 chlamydiae are present, further cell division is inhibited
by preventing additional RB-to-DB transitions.

Regarding the cell size dynamics, each time that an RB is created a growth rate k is
calculated from a normal distribution with mean µR and standard deviation σR. If ∆t is
the time before the next state transition, then the size at the new state transition is ek∆t

times the size at the previous transition. The same calculation is carried out for every DB,
using a new independent growth rate k sampled using the same parameters µR, σR. At
the end of each DB state, the model implements asymmetric cell division as follows. The
cell is partitioned in two using a ratio r sampled from a binomial partition distribution
distribution, r ∼ 1

n
Binom(n, 1/2). This distribution has mean E(r) = 1/2 and standard

deviation σ1 = 1
2
√
n
. One way to conceptualize it is to divide the DB into n different

compartments, each of which chooses one of the two daughter cells independently using a
fair coin.

Binomial distributions are also used in the literature as a simple partitioning method for
cell division, see for instance [5, 6]. Once again they are not the only proposed method, but
other methods tend to be compared with binomial partitioning. There is an inherent appeal
in this distribution because of a simple (if not entirely realistic) mechanistic assumption that
can lead to it, that of different components of the cell choosing daughter cells independently.

A simple calculation writing r = 1
n

∑n
j=1Xj, where Xj is a Bernoulli variable, shows that

the product of two independent binomial partition functions is also a binomial partition,
r1r2 ∼ 1

n2Binom(n2, 1/4). More generally,

r1 . . . rm ∼
1

nm
Binom(nm,

1

2m
).

This product has mean E = 1
2m

, variance σ2 = 1
nm 2m(1 − 2m) ≈ 1

nm 2m = (2/n)m, and
coefficient of variation

CV = σ/E ≈ (2/n)m/2 2m = (2/n)m/2 4m/2 = (8/n)m/2.

If the value chosen for n is significantly larger than 8, n� 8, then the coefficient of variation
becomes very small for large m, so that r1 . . . rm ≈ 1

2m
.
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Suppose that t1, t2, . . . 2m are the times of the state transitions with ∆i = ti− ti−1, and si
is the size at time ti. Assuming that the size threshold for conversion has not been reached,
it holds for an RB-to-DB transition that

si+1 = sie
ki∆i , ki ∼ N(µR, σ

2
R),

and for a DB-to-RB transition that

si+1 = sirie
ki∆i , ki ∼ N(µR, σ

2
R), ri ∼

1

n
Binom(n, 1/2)

Overall, these two transitions will alternate and it holds

s2m = s0r2r4 . . . r2me
k1∆1+...+k2m∆2m , ki ∼ N(µR, σ

2
R), r2i ∼

1

n
Binom(n, 1/2)

For n � 8, we have calculated above that r2r4 . . . r2m ≈ 1/2m. The distribution of
s2m is roughly lognormal due to the Central Limit Theorem. This can also be roughly
observed in the experimental data, see Figure 5B and 5C showing the size distribution
of RBs at 24hpi and 40hpi. The conversion of RB to IB and EB acts as a ‘drain’ on
this distribution as chlamydiae become sufficiently small. Notice also that a lognormal
distribution is independent of the choices for the distribution of ki and ∆i, so by itself it
does not validate these choices.

If an RB undergoes a single transition to DB and cell division to form a new RB, the size
ratio for the new RB is

R = si+2/si = reki∆ieki+1∆i+1 .

The mean and standard deviation for this size ratio can be calculated as a function of the
parameters of the system, and for the chosen parameters it holds that E(R) ≈ 0.796, σ(R) ≈
0.156. Thus a DB divides on average when it reaches about 1.6± 0.31 times the size of the
original RB.

Supplementary Note 3: Stochastic Model Parameters

The parameter values used for this simulation are the following. The simulation is started
at time t0 = 12 hpi, and the maximum computed time is 40 hpi, as measured experimentally.
The initial RB size is s0 = 1µ`3, as measured in Figure 3A. The threshold below which RBs
can convert is set to sthr = 0.06µ`3, as measured in Figure S3A.

The mean transition time ρRD is used to draw transition times from a gamma distribution
with shape parameter γs = 5 and scale parameter θ = ρRD/γs. Similarly for all other
transitions. In order to measure mean transition times between RB and DB, notice in
Figure 1B that inclusions grew from a mean of 1.3 chlamydiae at 12hpi to a mean of 577
chlamydiae at 28hpi. This is a 440 = 28.8-fold growth, leading to an estimate of around
8.8 cell divisions over a span of 16 hours. This leads to an estimate of around 1.8 hours
per cell division. Since also in Figure 1B one can see that the numbers of RB and DB
are roughly similar at all times, we estimate that half of that time, or 0.9 hours, is spent
on average in each of RB and DB forms. In this way we set the mean transition times
ρRD = ρDR = 0.9h. We also set ρIE = 2.5h and ρRI(s) = 0.1h when s ≤ sthr, ρRI(s) = ∞
otherwise (i.e. conversion is shut down). These parameters determine the size of the IB and
EB populations and were set for consistency with experimental data in Figure 5.
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Regarding the growth rates for chlamydial forms, notice that on Figure 3B there is a
remarkable stability in the ratio of mean DB to RB volume ratio of around 1.5. The ratio
of DB to daughter RB can be described using the above variables as

si/si+1 = si/(sirie
ki∆i) = 1/(rie

ki∆i).

Setting the growth rate µR = 0.25h−1, the above ratio has a mean of 1.57 as measured by
simulation. This is consistent with the experimental data for this ratio. We also set the
growth variability parameter σR = 0.04h−1.

The asymmetric cell division parameter σ1 has been directly measured experimentally
using 3D microscopy techniques to have a value of around σ1 = 0.05, as observed in Figure 4.
Since the partitioning of the cell division is calculated through a binomial distribution
r ∼ 1

n
Binom(n, 1/2) and σ1 = 1

2
√
n
, this formula can be used to calculate the value of n,

n = 100. Notice that n� 8, as required for part of the analysis above.

Supplementary Note 4: Size Structured Population Density

We conclude with a plausible analytical representation of the size-structured model in
Figure 5. Suppose again that each Chlamydia in the system has an associated size, and
that conversion to EB can only take place when the size has become sufficiently small. For
a two-variable system involving the forms EB and RB, a simple size-structured model is
given by the work by Diekmann and colleagues [7]. Let R(x, t) represent the density of the
population of RB forms with size x at time t. So for any two sizes x1 < x2, the number
of RB forms at time t is given by

∫ x2

x1
R(x, t) dx. The dynamics of the system, assuming

deterministic growth and symmetric cell division, is described by the equation

∂R

∂t
(x, t) = − ∂

∂x
(kxR(x, t))− αRRR(x, t) + 4αRRR(2x, t)− µ(x)R(x, t).

Here kx is the linear growth rate of an RB of size x, and the first term on the right hand
side describes the growth drift in the system. The second and third terms describe the rate
of cell division – the density R(x, t) is positively affected by the density R(2x, t) since the
cells with size 2x are dividing with rate αRR. The function µ(x) is the rate of degradation,
or in this case conversion to EB, depending on size. We define µ(x) = 0 for x > sthr and
µ(x) = αRE > 0 for x ≤ sthr. Finally, the EB forms do not need to be size structured and
can be defined by the equation

E ′(t) =

∫ ∞
0

µ(x)R(x, t) dx = αRE

∫ sthr

0

R(x, t) dx.

This model was studied in detail in [7], showing that under certain conditions a stable
size distribution is reached. However in our case we don’t expect a stable equilibrium
distribution, because the rate of cell division is significantly faster than cell growth.

A generalization to the four variable case can be written as follows, including density
functions for R(x, t), D(x, t) and functions E(t), I(t). For simplicity we assume symmetric
cell divisions.
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∂R

∂t
(x, t) = − ∂

∂x
(kxR(x, t))− αRDR(x, t) + 4αDRD(2x, t)− µ(x)R(x, t)

∂D

∂t
(x, t) = − ∂

∂x
(kxD(x, t)) + αRDR(x, t)− αDRD(x, t)

I ′(t) = αRI

∫ sthr

0

R(x, t) dx− αIEI

E ′(t) = αIEI.

Stochasticity in the growth rates can be incorporated through diffusion terms, see e.g. [8].
The similarity between this model and the simulations in Figure 5 is tempered by the fact
that the numerical data simulates a single inclusion, with significant correlation between
cells of similar lineages. Also, it is not clear how the choice of a gamma distribution for the
cell division time, rather than an exponential distribution, affects the relationship with this
model. The analysis of this model, and a full derivation based on the stochastic definition
in the previous section, is out of the scope of this appendix and will be left for a future
publication.
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